Nos posts anteriores dessa série, listamos os atores e os beneficiários de uma estratégia de Big Data dentro de uma organização de saúde e comecei a analisar as oportunidades de aplicação de Big Data para cada um deles, começando com os Provedores. Nesse post analisaremos rapidamente as oportunidades que se apresentam para outro grupo, a Força de Trabalho.
Existem diversas oportunidades que se referem a características básicas do Big Data, especialmente ao seu potencial agregador e pervasivo que podem ser aplicadas pelos e para a Força de Trabalho. Vamos tomar um médico como representante dessa categoria e vejamos, por exemplo, seu fluxo usual em um hipotético round (“round” é como tratamos, em nosso meio, a visita em série aos pacientes internados sob responsabilidade de um médico ou de uma determinada equipe):
-
O médico visita o paciente em seu leito, coleta as informações subjetivas do mesmo, atualiza um ou outro conhecimento a cerca da evolução de sua doença e volta para a sala de prescrição;
-
Na sala de prescrição ele abre o sistema 1 para verificar os últimos exames de laboratório do paciente;
-
A seguir ele abre o sistema 2 para verificar as últimas imagens e/ou seus relatórios;
-
Ato contínuo ele abre o sistema 3 para verificar se o resultado de um procedimento (por exemplo, um exame de patologia) retornou e, caso positivo, qual seu resultado;
-
De posse desse conhecimento, ele abre o sistema de prontuário eletrônico para registrar sua visita e para prescrever os próximos passos ou a continuidade do cuidado;
-
Finalmente o médico retorna para a enfermaria para visitar o paciente ao lado.
Com algumas variações e com a utilização de notas à beira do leito, os médicos podem otimizar essa rotina, por exemplo, visitando a todos e depois se retirando para “lidar” com os diversos sistemas. Dificilmente, no entanto, vão escapar de interagir com sistemas diferentes e utilizar seu bom senso para integrar os conhecimentos neles contidos. Uma perda de termpo e eficiência injustificada. Sem falar que é fácil negligenciar um desses passos (por exemplo, ao invés de verificar o sistema de patologia por algum resultado adiantado, o médico escolhe esperar os X dias que usualmente são consumidos na análise de uma peça anatômica e perde a oportunidade de tomar uma atitude assim que a informação estiver disponível).
Ora! Tecnologia para agregar todas as informações de diferentes sistemas está disponível há muitos anos e o Big Data não só a tornou acessível como eficiente. E se o médico tiver todas essas informações na mão? Suponha em um tablet ou outro dispositivo de visualização, com uma interface de busca estilo Google, ou mesmo algo mais estruturado, que aglutine todas as informações relevantes ao alcance de um toque. Ao invés de páginas e páginas de exames laboratoriais, gráficos gerados “just-in-time” com a evolução de todos os exames relevantes e com codificação de cores para indicar os que estejam fora do padrão. Da mesma forma que as notificações para os Gerentes Assistenciais, exames que saiam do padrão podem gerar alertas personalizados, que os médicos podem receber em sua interface de trabalho ou em outro dispositivo.
Outra prática onde a agregação que o Big Data é capaz de proporcionar pode ajudar essa população é a interação entre as disciplinas. O mesmo sistema de notificação pode ser utilizado para avisar de interconsultas ou pedidos de consultoria para outras especialidades. Muitos grupos fazem isso utilizando ferramentas públicas, como WhatsApp, ou celulares dedicados a grupos (como o “celular da cirugia”), mas veja que é muito mais fácil e efetivo criar uma notificação no sistema do que entrar em contato com alguém em uma ferramenta terceira e passar um caso para consultoria (ao que o destinatário poderia ter acesso completo e não a apenas uma fração). Ademais, a agregação desses metadados pode ajudar a gerar outros insights: por exemplo, pacientes que têm mais de duas consultorias solicitadas têm prognóstico mais reservado? Ou equipes que têm muitas solicitações de interconsultas têm o número de profissionais adequado?
Áreas de apoio, como patologia e SADTs também se beneficiam. Veja que a rotina intensa de trabalho (fruto da necessidade de produzir resultados cada vez mais rápido) nessas áreas leva muitas vezes a que seus trabalhadores negligenciem as informações que estão disponíveis em outro sistema e se restrinjam aos pequenos bits de informação contidas em uma papeleta que podem ou não ser relevantes e podem ou não ser completos. A qualidade do resultado cai e aumenta muito a chance de erros ou intervenções desnecessárias.
Veja que examinamos majoritariamente o caso do médico, mas praticamente toda a Força de Trabalho assistencial está em maior ou menor grau submetida a isso. Fisioterapeutas, psicólogos, assistentes sociais, todos têm rotinas parecidas e se beneficiariam dos mesmos tipos de ferramentas.
No próximo post, analisaremos o que se espera de oportunidades do Big Data para os Pagadores.
0sem comentários ainda